
Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 1 of 65

EcFAT API Reference

Version 3.1.2

© Copyright 2016 EmbCode AB

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 2 of 65

Table of contents

1 GENERAL OPERATIONS ... 4

1.1 ECF_INIT ... 4

1.2 ECF_GETERRORMESSAGE ... 5

2 BLOCK DEVICE OPERATIONS ... 6

2.1 ECF_MOUNT .. 6

2.2 ECF_UNMOUNT .. 9

2.3 ECF_FORMAT ... 10

2.4 ECF_CREATEPARTITIONTABLE .. 12

2.5 ECF_CREATEPARTITION .. 14

2.6 ECF_GETPARTITIONINFO .. 15

2.7 ECF_WEARLEVELFORMAT .. 16

2.8 ECF_GETBLOCKDRIVERSTATISTICS .. 18

3 FILE SYSTEM OPERATIONS .. 19

3.1 ECF_FLUSH .. 19

3.2 ECF_CALCULATEFREESPACE .. 20

4 FILE OPERATIONS ... 21

4.1 ECF_OPENFILE ... 21

4.2 ECF_CLOSEFILE ... 23

4.3 ECF_READFILE .. 24

4.4 ECF_WRITEFILE .. 26

4.5 ECF_SEEKFILE ... 27

4.6 ECF_GETFILESIZE .. 28

4.7 ECF_SETFILESIZE ... 29

4.8 ECF_GETFILEPOSITION ... 30

4.9 ECF_SETATTRIBUTES .. 31

4.10 ECF_RENAME ... 33

4.11 ECF_DELETE ... 34

4.12 ECF_PATHEXISTS .. 35

4.13 ECF_GETFILEINFO ... 36

5 DIRECTORY OPERATIONS .. 37

5.1 ECF_CREATEDIRECTORY ... 37

5.2 ECF_SCANDIRBEGIN .. 38

5.3 ECF_SCANDIRNEXT ... 39

6 DIRECT BLOCK ACCESS .. 40

6.1 ECF_GETVOLUMEINFORMATION .. 40

6.2 ECF_READSECTOR ... 41

6.3 ECF_WRITESECTOR ... 42

6.4 ECF_TRIMSECTORRANGE.. 44

7 DATA STRUCTURES ... 45

7.1 STRUCT ECF_BLOCKDRIVER ... 45

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 3 of 65

7.1.1 m_fnReadSector .. 46

7.1.2 m_fnWriteSector ... 49

7.1.3 m_fnGetVolumeInformation ... 51

7.1.4 m_fnGetDriveProperty .. 52

7.1.5 m_fnTrimSectorRange (optional) .. 54

7.1.6 m_fnFlush (optional) ... 56

7.2 STRUCT ECF_FILEHANDLE ... 57

7.3 STRUCT ECF_FILEDIRECTORYDATA .. 58

7.4 STRUCT ECF_DATETIME .. 59

7.4.1 Converting to time_t ... 60

7.4.2 Converting from time_t ... 61

8 OPTIONS (DEFINES) .. 62

8.1 ECF_OPT_SUPPORT_ALL_SECTORSIZES .. 62

8.2 ECF_OPT_SUPPORTED_MOUNTPOINTS.. 62

8.3 ECF_OPT_SUPPORT_FORMAT ... 62

8.4 ECF_OPT_SUPPORT_LONG_FILENAMES ... 62

8.5 ECF_OPT_SECTOR_CACHE ... 62

8.6 ECF_OPT_ATTEMPT_ORDERED_WRITE .. 62

8.7 ECF_OPT_USE_MUTEX .. 62

8.8 ECF_OPT_PROGRESS_CALLBACK ... 63

8.9 ECF_OPT_WATCHDOG_CALLBACK .. 63

8.10 ECF_OPT_CURRENT_TIME_FUNCTION ... 64

8.11 ECF_OPT_CUSTOM_CRC_ROUTINE ... 64

8.12 ECF_OPT_SUPPORT_WEARLEVEL .. 65

8.13 ECF_OPT_WEARLEVEL_META_CACHE .. 65

8.14 ECF_OPT_SUPPORT_BAD_BLOCK_MANAGEMENT ... 65

8.15 ECF_OPT_WEARLEVEL_MAX_BAD_BLOCK_COUNT .. 65

8.16 ECF_OPT_JOURNAL_DIRECT_COMMIT ... 65

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 4 of 65

1 General operations

1.1 ECF_Init

The ECF_Init function initialises the EcFAT file system driver. It must be called before any of the other

functions can be called.

ECF_ErrorCode ECF_Init(void);

Parameters

None

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

If you haven't defined ECF_OPT_USE_MUTEX and aren't using a multithreaded system,

ECF_Init() cannot fail and there is no need to check the return code.

Remarks

There is no need to uninitialize EcFAT. Just make sure you have unmounted all the drives when

you exit.

Example Code

See ECF_Mount

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 5 of 65

1.2 ECF_GetErrorMessage

The ECF_GetErrorMessage function translates an ECF_ErrorCode to a readable string.

const char * ECF_GetErrorMessage(

 ECF_ErrorCode err

);

Parameters

 err

This is the ECF_ErrorCode to translate.

Return value

Returns a const string that can be displayed to the end user.

Remarks

Error codes between ECFERR_BLOCKDRIVER_ERROR_FIRST and

ECFERR_BLOCKDRIVER_ERROR_LAST are reserved for block driver errors and

ECF_GetErrorMessage will not return a meaningful error message for these error codes.

Example Code

See ECF_Mount

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 6 of 65

2 Block device operations

2.1 ECF_Mount

The ECF_Mount function mounts a file system.

ECF_ErrorCode ECF_Mount(

 char driveLetter,

 struct ECF_BlockDriver *pBlockDriver,

 uint16_t flags

);

Parameters

 driveLetter

This is the drive letter you want to use to refer to this file system. E.g. 'A'

 pBlockDriver

This is a pointer to the ECF_BlockDriver struct that allows the file system to access your block

device.

 flags

These are flags specifying which partition to mount.

ECF_MOUNT_PARTITION_AUTO:

Attempts to mount partition 1 if a partition table exists but will mount partitionless if not. This is

the default and recommended for most applications.

ECF_MOUNT_PARTITION1:

Mounts partition 1 on the block device. This is usually the case for mounting an SD Card.

ECF_MOUNT_PARTITION2:

Mounts partition 2 on the block device.

ECF_MOUNT_PARTITION3:

Mounts partition 3 on the block device.

ECF_MOUNT_PARTITION4:

Mounts partition 4 on the block device.

ECF_MOUNT_PARTITIONLESS:

Mounts a block device that does not contain a partition table. This is usually the case when

mounting a block device that resides on an embedded flash.

ECF_MOUNT_JOURNAL:

Activates journaling for the mounted partition.

Activating journaling will auto-create the necessary JOURNAL.ECF file in the root folder

automatically.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 7 of 65

Remarks

This must be called before accessing files on the disk.

Example Code

#include <stdio.h>

#include <EcFAT/EcFAT.h>

// Use this buffer as a 32kb RAM Disk

uint8_t abRamDisk[64][512];

ECF_ErrorCode RamDriver_ReadSector(

 struct ECF_BlockDriver *,

 uint32_t dwSector,

 uint8_t *pbData)

{

 memcpy(pbData, abRamDisk[dwSector], 512);

 return ECFERR_SUCCESS;

}

ECF_ErrorCode RamDriver_WriteSector(

 struct ECF_BlockDriver *,

 uint32_t dwSector,

 uint8_t *pbData)

{

 memcpy(abRamDisk[dwSector], pbData, 512);

 return ECFERR_SUCCESS;

}

ECF_ErrorCode RamDriver_GetVolumeInformation(

 struct ECF_BlockDriver *,

 uint16_t* pwSectorSize,

 uint32_t* pdwNumberOfSectors)

{

 *pwSectorSize = 512;

 *pdwNumberOfSectors = 64;

 return ECFERR_SUCCESS;

}

int main(int argc, char **argv)

{

 struct ECF_BlockDriver bd;

 ECF_ErrorCode err;

 ECF_Init();

 memset(&bd, 0, sizeof(bd));

 bd.m_fnReadSector = RamDriver_ReadSector;

 bd.m_fnWriteSector = RamDriver_WriteSector;

 bd.m_fnGetVolumeInformation = RamDriver_GetVolumeInformation;

 err = ECF_Format(&bd, ECF_CLUSTERSIZE_AUTO, ECF_FORMAT_QUICK);

 if(err != ECFERR_SUCCESS) {

 printf("Block device could not be formatted. Error: %s\r\n",

 ECF_GetErrorMessage(err));

 return 1;

 }

 err = ECF_Mount('A', &bd, ECF_MOUNT_PARTITION_AUTO);

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 8 of 65

 if(err != ECFERR_SUCCESS) {

 printf("Block device could not be mounted. Error: %s\r\n",

 ECF_GetErrorMessage(err));

 return 1;

 }

 // ... Read or write some files to the disk ...

 err = ECF_Unmount('A');

 if(err != ECFERR_SUCCESS) {

 printf("Block device could not be unmounted. Error: %s\r\n",

 ECF_GetErrorMessage(err));

 return 1;

 }

}

See also

ECF_Format, ECF_Unmount

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 9 of 65

2.2 ECF_Unmount

The ECF_Unmount function unmounts a file system. It is very important to unmount a file system after

usage so that all the data is saved.

ECF_ErrorCode ECF_Unmount(

 char driveLetter

);

Parameters

 driveLetter

This is the drive letter of the file system you wish to unmount. E.g. 'A'.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

This must be called when you are done using a drive. If you are worried about power loss or

similar scenarios you do not need to call ECF_Unmount()/ECF_Mount() repeatedly. Call

ECF_Flush() instead to write all data to disk.

Example Code

See ECF_Mount

See also

ECF_Mount, ECF_Flush

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 10 of 65

2.3 ECF_Format

The ECF_Format function formats a block device to prepare it to hold files. It will erase all existing

data on the block device.

ECF_ErrorCode ECF_Format(

 struct ECF_BlockDriver *pBlockDriver,

 uint16_t clusterSize,

 uint16_t flags

);

Parameters

 pBlockDriver

This is a pointer to the ECF_BlockDriver struct that allows the file system to access your block

device.

 clusterSize

This is the desired cluster size. Valid values are 512, 1024, 2048, 4096, 8192, 16384 and

32768.

ECF_CLUSTERSIZE_AUTO:

Automatically select the smallest possible cluster size.

 flags

Options to ECF_Format(). Several options can be used and are OR:ed together.

Specify only one or none of the ECF_FORMAT_PARTITIONLESS,

ECF_FORMAT_CREATE_PARTITION1 and ECF_FORMAT_PARTITIONx flags. If none of

these flags is specified, ECF_FORMAT_PARTITIONLESS will be used as the default.

ECF_FORMAT_PARTITIONLESS:

Format this block device without using a partition table. Recommended setting when

formatting an internal flash and you only want to use one partition. This is the default.

ECF_FORMAT_CREATE_PARTITION1:

This will clear the partition table, create a partition that occupies the entire block device and

format it. Recommended setting when formatting an SD card and you only want to use one

partition.

ECF_FORMAT_PARTITION1:

This will format partition 1. The partition must already exist.

ECF_FORMAT_PARTITION2:

This will format partition 2. The partition must already exist.

ECF_FORMAT_PARTITION3:

This will format partition 3. The partition must already exist.

ECF_FORMAT_PARTITION4:

This will format partition 4. The partition must already exist.

ECF_FORMAT_QUICK:

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 11 of 65

Performs a quick format by not clearing the data area of the disk when formatting.

Note: If you are using Trim support, the entire area will always be trimmed regardless of this

flag.

ECF_FORMAT_ALIGN:

Aligns the cluster placement to the cluster size. This is useful if you are using flash memory to

store your file system. By using this flag and a suitable cluster size you can be sure that each

of the clusters is aligned to an even page boundary on your flash.

As an example, if you are using a flash with a page size of 4096 bytes it is recommended that

you enable the ECF_FORMAT_ALIGN flag and set the cluster size to 4096 for best results.

ECF_FORMAT_ONLY_FAT12:

Will force the FAT12 format. This will possibly waste space and create a FAT12 that is as big

as possible. It is useful if you want to make sure the formatted disk is compatible with EcFAT

Lite.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

ECF_Format will erase all the data on the block device. It needs to be called for an unformatted

block device before it can be mounted.

You need to specify ECF_OPT_SUPPORT_FORMAT in your Project.h for EcFAT to compile

with support for this function.

If you want to wear-level or use bad block management, you should call ECF_WearLevelFormat

before calling ECF_Format.

Example Code

See ECF_Mount

See also

ECF_Mount, ECF_WearLevelFormat, ECF_CreatePartitionTable, ECF_CreatePartition

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 12 of 65

2.4 ECF_CreatePartitionTable

The ECF_CreatePartitionTable function creates an empty partition table. If one exists, it will be

overwritten.

ECF_ErrorCode ECF_CreatePartitionTable(

 struct ECF_BlockDriver *pBlockDriver,

 uint16_t flags

);

Parameters

 pBlockDriver

This is a pointer to a struct ECF_BlockDriver of the disk you want to create the partition table

on.

 flags

Flags. No flags are currently defined, specify 0.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

You need to specify ECF_OPT_SUPPORT_FORMAT in your Project.h for EcFAT to compile

with support for this function.

Example Code

void InitializeDisk(struct ECF_BlockDriver *blockDriver)

{

 // Error checking omitted, sector size of 512 assumed.

 // Initialize the partition table

 ECF_CreatePartitionTable(blockDriver, 0);

 // Create partition 1: A 2 MiB FAT partition for configuration

 ECF_CreatePartition(blockDriver, ECF_PARTITION_TYPE_FAT,

2*1024*1024/512, 0);

 // Create partition 2: A 10 MiB FAT partition for logs

 ECF_CreatePartition(blockDriver, ECF_PARTITION_TYPE_FAT,

10*1024*1024/512, 0);

 // Create partition 3: The rest of the space as a RAW partition

 // that we write data to directly

 ECF_CreatePartition(blockDriver, ECF_PARTITION_TYPE_RAW, 0, 0);

 // Format partition 1

 ECF_Format(blockDriver, 512, ECF_FORMAT_PARTITION1);

 // Format partition 2

 ECF_Format(blockDriver, 512, ECF_FORMAT_PARTITION2);

}

See also

ECF_CreatePartition, ECF_Format

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 13 of 65

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 14 of 65

2.5 ECF_CreatePartition

The ECF_CreatePartition function creates a partition on the supplied block device.

ECF_ErrorCode ECF_CreatePartition(

 struct ECF_BlockDriver *pBlockDriver,

 uint8_t partitionType,

 uint32_t sizeInSectors,

 uint16_t flags

);

Parameters

 pBlockDriver

This is a pointer to a struct ECF_BlockDriver of the disk you want to create the partition on.

 partitionType

The partition type:

ECF_PARTITION_TYPE_FAT:

Create a FAT partition to store a FAT file system on.

ECF_PARTITION_TYPE_RAW:

Create a RAW partition to store raw data in.

 sizeInSectors

The size of the partition in sectors. Specify 0 to use all of the remaining space.

 flags

Flags. No flags are currently defined, just specify 0.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

Call ECF_CreatePartitionTable() first to create/clear the partition table. Then call

ECF_CreatePartition() for each partition you want to create.

You need to specify ECF_OPT_SUPPORT_FORMAT in your Project.h for EcFAT to compile

with support for this function.

Example Code

See example for ECF_CreatePartitionTable

See also

ECF_CreatePartitionTable, ECF_Format

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 15 of 65

2.6 ECF_GetPartitionInfo

The ECF_GetPartitionInfo function returns information about a partition on a block device.

ECF_ErrorCode ECF_GetPartitionInfo(

 struct ECF_BlockDriver *pBlockDriver,

 uint8_t partitionNumber,

 uint8_t *pPartitionType,

 uint32_t *pStartSector,

 uint32_t *pPartitionSizeSectors

);

Parameters

 pBlockDriver

This is a pointer to a struct ECF_BlockDriver of the disk for which you want the partition

information.

 partitionNumber

The number of the partition you wish to get info for. 1-4 are valid values.

 pPartitionType

A pointer to a uint8_t that will receive the partition type

 pStartSector

A pointer to a uint32_t that will receive the start sector of the partition.

 pPartitionSizeSectors

A pointer to a uint32_t that will receive the size of the partition in sectors.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Returns ECFERR_NOPARTITION if the specified partition does not exist.

Returns ECFERR_NOPARTITIONTABLE if a partition table does not exist.

Remarks

None.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 16 of 65

2.7 ECF_WearLevelFormat

The ECF_WearLevelFormat function formats a block device to prepare it to hold wear leveled data. It

will erase all existing data on the block device.

ECF_ErrorCode ECF_WearLevelFormat(

 struct ECF_BlockDriver *pBlockDriver,

 uint16_t maximumNumberOfBadBlocks,

 uint16_t flags

);

Parameters

 pBlockDriver

This is a pointer to the ECF_BlockDriver struct for the block device you want to prepare for wear

leveling.

 maximumNumberOfBadBlocks

Specifies the maximum number of bad blocks/sectors the device can handle. Set to 0 if you

don't want to support bad block handling.

Must be 0 if ECF_OPT_SUPPORT_BAD_BLOCK_MANAGEMENT is not defined.

ECF_OPT_WEARLEVEL_MAX_BAD_BLOCK_COUNT (default 256) specifices the maximum

number of bad blocks EcFAT can handle. maximumNumberOfBadBlocks specifies the

maximum number of bad blocks the disc can store.

 flags

Options to ECF_WearLevelFormat().

ECF_WEARLEVELFORMAT_BAD_BLOCK_SCAN:

Will scan the device for bad blocks by attempting to write each block. The block driver must

report ECFERR_BADBLOCK for blocks that can not be written and that should be marked as

bad.

Only available if ECF_OPT_SUPPORT_BAD_BLOCKS is defined.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

Wear-leveling is used to even out writes to flash memories. It is useful if you are storing data on

a device which only supports a limited write count on each sector and that doesn't have internal

wear leveling. This is typical for flash memories.

Because of the extra data structures necessary needed to keep track of the block relocation, a

wear leveled block device will use around 4-5% of the disk space for internal structures. The low

level format will not be FAT compatible although the upper layer will be. This means that you

cannot directly read the data from say a PC but converting it from the wear-leveled FAT form to

the regular FAT form is fairly easy.

ECF_WearLevelFormat will erase all the data on the block device. It needs to be called for an

unformatted block device before any of the other block device functions can be called.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 17 of 65

In a typical case you will call ECF_WearLevelFormat() first followed by optionally

ECF_CreatePartitionTable/ECF_CreatePartition and finally ECF_Format for all your partitions.

You need to specify ECF_OPT_SUPPORT_WEARLEVEL and

ECF_OPT_SUPPORT_FORMAT in your Project.h for EcFAT to compile with support for this

function.

See also

ECF_CreatePartitionTable, ECF_CreatePartition, ECF_Format, ECF_Mount

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 18 of 65

2.8 ECF_GetBlockDriverStatistics

The ECF_GetBlockDriverStatistics function returns statistics about a block device.

ECF_ErrorCode ECF_GetBlockDriverStatistics(

 struct ECF_BlockDriver *pBlockDriver,

 uint16_t statisticsType,

 uint32_t *pValue

);

Parameters

 pBlockDriver

This is a pointer to the ECF_BlockDriver struct that allows the file system to access your block

device.

 statisticsType

Selects the value you want to retrieve.

ECF_STATISTICS_HIGHEST_WRITE_COUNT_SEEN:

The highest write count seen on a wear-leveled block device.

Note that the function will only report the highest write count seen during this session so you

should ideally call it after you've done reads and writes to the disc or periodically. Calling it at

start-up will return a value that is too low in most cases.

Only available if ECF_OPT_SUPPORT_WEARLEVEL is defined.

ECF_STATISTICS_BAD_BLOCKS_DETECTED:

The number of bad blocks detected on the disk.

Only available if ECF_OPT_SUPPORT_WEARLEVEL and

ECF_OPT_SUPPORT_BAD_BLOCK_MANAGEMENT is defined.

ECF_STATISTICS_BAD_BLOCKS_SUPPORTED:

The maximum number of allowed bad blocks on the disk.

Only available if ECF_OPT_SUPPORT_WEARLEVEL and

ECF_OPT_SUPPORT_BAD_BLOCK_MANAGEMENT is defined.

 pValue

This is a pointer to a uint32_t that will receive the value requested.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 19 of 65

3 File system operations

3.1 ECF_Flush

ECF_Flush writes all unsaved data in the sector cache to the block device.

ECF_ErrorCode ECF_Flush(

 char driveLetter

);

Parameters

 driveLetter

This is the drive letter you want to use to refer to this file system. E.g. 'A'.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

Some systems that can experience sudden power loss can benefit from calling ECF_Flush

when it wants to make sure that all data has been written to the block device.

After a successful call to ECF_Flush the data is guaranteed to be written to the block device.

If you expect a power loss, you should also enable journaling (see ECF_Mount) to make sure

that writes will not corrupt the file system.

Example Code

#include <EcFAT/EcFAT.h>

void WriteToLogFile(struct ECF_FileHandle *pFileHandle, const char

*logEntry)

{

 // Error checking omitted

 ECF_WriteFile(pFileHandle, strlen(logEntry), logEntry);

 // Make sure the log entry is actually written to disk.

 // We assume that the file is located on drive 'A'.

 ECF_Flush('A');

}

See also

ECF_Mount

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 20 of 65

3.2 ECF_CalculateFreeSpace

The ECF_CalculateFreeSpace function calculates the amount of free disk space on a mounted file

system.

ECF_ErrorCode ECF_CalculateFreeSpace(

 char driveLetter,

 uint32_t *pFreeSectors,

 uint16_t *pSectorSize

);

Parameters

 driveLetter

This is the drive letter of the file system you which to calculate the free space of. E.g. 'A'

 pFreeSectors

This is a pointer to a uint32_t that will receive the number of free sectors.

 pSectorSize

This is a pointer to a uint16_t that will receive the sector size. This parameter is not mandatory

and may be NULL.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

ECF_CalculateFreeSpace needs to scan the entire FAT table to get an accurate count of the

number of free sectors which may take some time.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 21 of 65

4 File operations

4.1 ECF_OpenFile

ECF_OpenFile opens a file on a mounted file system.

ECF_ErrorCode ECF_OpenFile(

 struct ECF_FileHandle *pFileHandle,

 const char *filename,

 uint8_t flags

);

Parameters

 pFileHandle

This is a pointer to a struct ECF_FileHandle structure to hold data about the open file. The

contents of the struct ECF_FileHandle will be cleared. There is no need to initialize it.

 filename

This is the name of the file to open. Files are always specified with their full paths including the

drive letter. To open a file called "Log.txt" on drive A you will need to specify the filename:

A:\Log.txt (which is "A:\\Log.txt" when entered as a C string)

To open a file called "My file.data" in the directory "My folder" on drive B you need to specify the

filename: B:\My folder\My file.data ("B:\\My folder\\My file.data" as a C string)

The maximum total path length including the trailing NUL character is 260 characters.

 flags

Specifies in which mode the file should be opened. Select one of ECF_MODE_READ,

ECF_MODE_READ_WRITE and ECF_MODE_APPEND.

ECF_MODE_READ:

Opens the file for reading. Reading will start at the beginning of the file.

ECF_MODE_READ_WRITE:

Opens the file for reading and writing. Reading and writing will start from the beginning of the

file. If the file doesn't exist it will be created.

ECF_MODE_APPEND:

Opens the file for reading and writing. Writing the file will write to the end of it. If the file

doesn't exist it will be created.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

If the call to ECF_OpenFile was successful you can now use your file handle to call other file

operations.

You may open the same file several times but you may only open it once in write mode. This

enables you to have one process that logs data to a file while another process reads it.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 22 of 65

On a journaled file system writes to the file system structures are protected but normal data

writes are not. If you open the file with ECF_MODE_DATAJOURNAL, data writes will be

journaled as well. This means that either the write will either be written in full or not at all (in

case of a power loss).

You may not write more than one sector size of data in each write (typically 512 or 4096 bytes).

Since the journal needs to be written on each write, writes to files opened with

ECF_MODE_DATAJOURNAL will be slower than normal.

Example Code

#include <EcFAT/EcFAT.h>

void main(int argc, char **argv)

{

 // ...Mount file system on 'A' here...

 struct ECF_FileHandle fileHandle;

 const char *cszMessage = "This will be written to the file\n";

 if(ECF_OpenFile(&fileHandle, "A:\\Log.txt", ECF_MODE_APPEND)

 == ECFERR_SUCCESS)

 {

 // Error checking omitted

 ECF_WriteFile(&fileHandle, cszMessage, strlen(cszMessage));

 ECF_CloseFile(&fileHandle);

 }

}

See also

ECF_ReadFile, ECF_WriteFile, ECF_SeekFile, ECF_GetFileSize, ECF_CloseFile

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 23 of 65

4.2 ECF_CloseFile

ECF_CloseFile closes an open file handle.

ECF_ErrorCode ECF_CloseFile(

 struct ECF_FileHandle *pFileHandle

);

Parameters

 pFileHandle

The pointer to an open file handle.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

Note: If you have opened a file in read/write mode, EcFAT will often write to the block device

when a file is closed. Since this might fail, it is important to check the error code even when you

close the file.

Example Code

See example for ECF_OpenFile()

See also

ECF_OpenFile

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 24 of 65

4.3 ECF_ReadFile

ECF_ReadFile reads data from an open file.

ECF_ErrorCode ECF_ReadFile(

 struct ECF_FileHandle *pFileHandle,

 uint8_t *pData,

 uint32_t bytesToRead,

 uint32_t *pBytesRead

);

Parameters

 pFileHandle

A pointer to an open file handle.

 pData

A pointer to a buffer big enough to hold the read data.

 bytesToRead

The number of bytes to read.

 pBytesRead

If not NULL, the uint32_t will be set to the number of bytes actually read. Also see the Remarks

section.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

If pBytesRead is NULL, ECF_ReadFile will attempt to read exactly the number of bytes

specified and return ECFERR_ENDOFFILE if there is not enough data available in the file. This

is the behaviour of EcFAT 2.2 and previous.

If pBytesRead is not NULL, ECF_ReadFile will attempt to read the number of bytes specified by

bytesToRead. If there aren't enough data available ECFERR_SUCCESS will still be returned.

pBytesRead will be set to the actual number of bytes read. If there are no bytes available to

read ECFERR_ENDOFFILE will be returned.

Example Code

#include <EcFAT/EcFAT.h>

#define COPYFILE_BUFFERSIZE 4096

void CopyFile(const char *sourceFileName, const char

*destinationFileName)

{

 struct ECF_FileHandle sourceFileHandle;

 struct ECF_FileHandle destinationFileHandle;

 uint32_t bytesRead;

 uint8_t abCopyBuffer[COPYFILE_BUFFERSIZE];

 // Error checking omitted

 ECF_OpenFile(&sourceFileHandle, sourceFileName, ECF_MODE_READ);

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 25 of 65

 ECF_OpenFile(&destinationFileHandle, destinationFileName,

ECF_MODE_READ_WRITE);

 while(ECFERR_SUCCESS ==

 ECF_ReadFile(&sourceFileHandle, abCopyBuffer,

COPYFILE_BUFFERSIZE, &bytesRead))

 {

 ECF_WriteFile(&destinationFileHandle, abCopyBuffer, bytesRead);

 }

 ECF_CloseFile(&destinationFileHandle);

 ECF_CloseFile(&sourceFileHandle);

}

See also

ECF_OpenFile

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 26 of 65

4.4 ECF_WriteFile

ECF_WriteFile writes data to an open file.

ECF_ErrorCode ECF_WriteFile(

 struct ECF_FileHandle *pFileHandle,

 const uint8_t *pData,

 uint32_t bytesToWrite

);

Parameters

 pFileHandle

A pointer to an open file handle.

 pData

A pointer to a buffer that holds the data to be written.

 bytesToWrite

The number of bytes to write.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

If you attempt to write past the end of the file, the file will be extended to hold all the written

data.

Example Code

See example for ECF_ReadFile.

See also

ECF_OpenFile

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 27 of 65

4.5 ECF_SeekFile

ECF_SeekFile changes the position of the file cursor within a file.

ECF_ErrorCode ECF_SeekFile(

 struct ECF_FileHandle *pFileHandle,

 uint32_t position

);

Parameters

 pFileHandle

A pointer to an open file handle.

 position

The absolute position within the file to move the file cursor to.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

This function only moves the cursor to an absolute position within the file. If you want to move it

relative to the current position or relative to the end of the file, you need to call

ECF_GetFileSize() and ECF_GetFilePosition() to calculate where to move.

See also

ECF_GetFilePosition, ECF_GetFileSize

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 28 of 65

4.6 ECF_GetFileSize

ECF_GetFileSize function gets the size of a currently open file.

ECF_ErrorCode ECF_GetFileSize(

 const struct ECF_FileHandle *pFileHandle,

 uint32_t *pFileSize

);

Parameters

 pFileHandle

A pointer to an open file handle.

 pFileSize

A pointer to a uint32_t to hold the file size.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

This can only be used to retrieve the size of an open file. To get the size of a file on disk, use

ECF_GetFileInfo() instead.

See also

ECF_GetFileInfo

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 29 of 65

4.7 ECF_SetFileSize

ECF_SetFileSize allows you to extend or truncate an open file.

ECF_ErrorCode ECF_SetFileSize(

 struct ECF_FileHandle *pFileHandle,

 uint32_t newFileSize

);

Parameters

 pFileHandle

A pointer to an open file handle.

 newFileSize

The desired file size.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

Use ECF_SetFileSize to extend a file if you know that you will write a lot of data to it. Otherwise

the file size will grow with each call to ECF_WriteFile which will update the FAT table and

directory structure on each write.

Note: If you extend a file using ECF_SetFileSize, the content of the extended part will be be

undefined. If you wish to extend it and zero it, you will need to fall ECF_WriteFile with a zeroed

buffer instead. The reason for this is that the main purpose of extending a file and then using

ECF_WriteFile is for speed. If ECF_SetFileSize had zeroed the file, that would have been

slower than just writing it using ECF_WriteFile.

You can also use ECF_SetFileSize to truncate a file if you have written to much data in the end.

Your file cursor will not be affected unless you the file cursor is pointing to a part that you are

truncating. If so, the file cursor will point to the end of the file and the end of the operation.

See also

ECF_WriteFileAsync

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 30 of 65

4.8 ECF_GetFilePosition

ECF_GetFilePosition function retrieves the position of the cursor in a currently open file.

ECF_ErrorCode ECF_GetFilePosition(

 const struct ECF_FileHandle *pFileHandle,

 uint32_t *pFilePosition

);

Parameters

 pFileHandle

A pointer to an open file handle.

 pFilePosition

A pointer to a uint32_t to hold the file position.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

None.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 31 of 65

4.9 ECF_SetAttributes

The ECF_SetAttributes function sets the attributes of a file or a directory.

ECF_ErrorCode ECF_SetAttributes(

 const char *path,

 uint8_t attributesToSet,

 uint8_t attributesCleared

);

Parameters

 path

The path of the file or directory to change attributes on.

 attributesToSet

The attributes that will be set when the function returns.

ECF_ATTR_READ_ONLY:

Marks the file as read only. Note that EcFAT will currently not honour this flag when opening

files.

ECF_ATTR_HIDDEN:

Marks the file as hidden.

ECF_ATTR_SYSTEM:

Marks the file as a system file.

ECF_ATTR_ARCHIVE:

Marks the file as archived.

 attributesCleared

The attributes that will be cleared when the function returns.

ECF_ATTR_READ_ONLY:

Clear the ECF_ATTR_READ_ONLY flag.

ECF_ATTR_HIDDEN:

Clear the ECF_ATTR_HIDDEN flag.

ECF_ATTR_SYSTEM:

Clear the ECF_ATTR_SYSTEM flag.

ECF_ATTR_ARCHIVE:

Clear the ECF_ATTR_ARCHIVE flag.

ECF_ATTR_ALL:

Clear all user modifiable flags.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 32 of 65

Note that if you pass arguments to both set and clear a flag it will be set. This means that you

can pass 0xFF or ECF_ATTR_ALL in attributesToClear if you want to set those passed in

attributesToSet and clear everything else.

Example Code

// Set the Read-only flag of file "file1.dat"

ECF_SetAttributes("A:\\file1.dat", ECF_ATTR_READ_ONLY, 0);

// Clear the Read-only flag in file2.dat

ECF_SetAttributes("A:\\file2.dat", 0, ECF_ATTR_READ_ONLY);

// Set the Read-only flag and clear the Archive flag on directory

ECF_SetAttributes("A:\\Dir1, ECF_ATTR_READ_ONLY, ECF_ATTR_ARCHIVE);

// Set the Read-only flag and clear all other flags on file3.dat

ECF_SetAttributes("A:\\file3.dat", ECF_ATTR_READ_ONLY, ECF_ATTR_ALL);

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 33 of 65

4.10 ECF_Rename

The ECF_Rename function renames a file or directory.

ECF_ErrorCode ECF_Rename(

 const char *oldPath,

 const char *newPath

);

Parameters

 oldPath

This is the path of the file or directory to rename.

 newPath

This is the new path of the file or directory.

The maximum total path length including the trailing NUL character is 260 characters.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

oldPath and newPath must be on the same drive.

The subdirectories in the new path does not need to exist. If they don't exist, they will be

created.

You must not rename an open file or a directory that is being scanned.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 34 of 65

4.11 ECF_Delete

The ECF_Delete function deletes a file or directory.

ECF_ErrorCode ECF_Delete(

 const char *path

);

Parameters

 path

This is the path of the file or directory to delete.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

If a directory is given as argument, ECF_Delete() will also recursively remove all the directories

and files contained within that directory.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 35 of 65

4.12 ECF_PathExists

The ECF_PathExists function checks if a path exists on a mounted file system.

ECF_ErrorCode ECF_PathExists(

 const char *path,

 uint8_t *pIsDirectory

);

Parameters

 path

The path to check.

 pIsDirectory

A pointer to a uint8_t which will be set to 1 if the supplied path is a directory. This parameter is

not mandatory and may be NULL.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success).

ECFERR_PATHNOTFOUND will be returned if the path does not exist.

Remarks

None.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 36 of 65

4.13 ECF_GetFileInfo

The ECF_GetFileInfo function retrieves information about a specific file or directory.

ECF_ErrorCode ECF_GetFileInfo(

 const char *path,

 struct ECF_FileDirectoryData *pFileDirectoryData

);

Parameters

 path

This is the path to the file or directory to retrieve data about.

 pFileDirectoryData

This is a pointer to a struct that will be filled with information about the file or directory.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

None.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 37 of 65

5 Directory operations

5.1 ECF_CreateDirectory

The ECF_CreateDirectory function creates a new directory.

ECF_ErrorCode ECF_CreateDirectory(

 const char *path

);

Parameters

 path

This is the name of directory to create. E.g. "A:\My new directory" ("A:\\My new directory" as a C

string)

The maximum total path length including the trailing NUL character is 260 characters.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

None.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 38 of 65

5.2 ECF_ScanDirBegin

The ECF_ScanDirBegin function starts the scan of a directory.

ECF_ErrorCode ECF_ScanDirBegin(

 struct ECF_FileHandle *pScanDirPosition,

 const char *path

);

Parameters

 pScanDirPosition

This a pointer to a struct ECF_FileHandle that EcFAT will use to keep track of the directory

scan. You do not need to initialize the struct, ECF_ScanDirBegin will initialize it for you.

 path

This is the path to scan. E.g. "A:\My directory" ("A:\\My directory" as a C string).

The maximum total path length including the trailing NUL character is 260 characters.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

None.

Example Code

void ListDirectory(const char *path)

{

 ECF_ErrorCode err;

 struct ECF_FileHandle scanHandle;

 struct ECF_FileDirectoryData fileData;

 // Error checking omitted

 ECF_ScanDirBegin(&scanHandle, path));

 while(ECFERR_SUCCESS == ECF_ScanDirNext(&scanHandle, &fileData))

 {

 // Skip the entry if it starts with .

 if(fileData.m_szFileName[0] == '.')

 continue;

 if(fileData.m_dirAttr & ECF_ATTR_DIRECTORY)

 printf("%s <DIR>\r\n", fileData.m_szFileName);

 else

 printf("%s\r\n", fileData.m_szFileName);

 }

}

See also

ECF_ScanDirNext

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 39 of 65

5.3 ECF_ScanDirNext

The ECF_ScanDirNext function retrieves information about the next file or directory in a directory

scan.

ECF_ErrorCode ECF_ScanDirNext(

 struct ECF_FileHandle *pScanDirPosition,

 struct ECF_FileDirectoryData *pFileDirectoryData

);

Parameters

 pScanDirPosition

This is a pointer to the struct previously initialized by ECF_ScanDirBegin.

 pFileDirectoryData

This struct will be filled with information about the next available file/directory.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Returns ECF_NOMOREFILES when all the entries in the directory have been scanned.

Remarks

When you scan a directory, the special entries "." and ".." (for the current and the parent

directory) will be returned. Most users want to ignore these so be sure to check for these

names.

Example Code

See example for ECF_ScanDirBegin().

See also

ECF_ScanDirBegin

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 40 of 65

6 Direct block access

6.1 ECF_GetVolumeInformation

ECF_GetVolumeInformation returns information about the disk size and sector size of a block device.

ECF_ErrorCode ECF_GetVolumeInformation(

 struct ECF_BlockDriver *pBlockDriver,

 uint16_t *pSectorSize,

 uint32_t *pNumberOfSectors

);

Parameters

 pBlockDriver

This is a pointer to the struct ECF_BlockDriver to get volume information from.

 pSectorSize

This is a pointer to a uint16_t that will be set to the sector size.

 pNumberOfSectors

This is a pointer to a uint32_t that will be set to the number of sectors.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

The difference between calling ECF_GetVolumeInformation and calling the block driver's

m_fnGetVolumeInformation directly is that ECF_GetVolumeInformation will properly handle

wear leveling and locking of the block driver. If the device is wear-leveled,

ECF_GetVolumeInformation will return the number of blocks that is actually usable which will be

less than the value return by m_fnGetVolumeInformation.

See also

m_fnGetVolumeInformation, ECF_Mount

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 41 of 65

6.2 ECF_ReadSector

ECF_ReadSector reads a single sector from a block device.

ECF_ErrorCode ECF_ReadSector(

 struct ECF_BlockDriver *pBlockDriver,

 uint32_t sector,

 uint8_t *pData,

 uint8_t flags

);

Parameters

 pBlockDriver

This is a pointer to the struct ECF_BlockDriver where you want to read a sector.

 sector

This specifies which sector to read.

 pData

This points to a uint8_t array that the block driver needs to fill with the read data.

 flags

These are flags for the read.

ECF_READSECTOR_BYPASS_WEARLEVELING:

If this flag is set, the block driver will bypass the wear leveling layer and read a physical

sector. There are very few reasons, if any, to do this.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

The difference between calling ECF_ReadSector and calling the block driver's m_fnReadSector

directly is that ECF_ReadSector will properly handle wear leveling and locking of the block

driver.

ECF_ReadSector will automatically handle wear leveling and read sectors even when they have

been moved because of wear leveling.

The normal use case for ECF_ReadSector is for reading sectors from a RAW partition without

file system.

See also

m_fnReadSector, ECF_Mount

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 42 of 65

6.3 ECF_WriteSector

ECF_WriteSector writes a single sector to the block device.

ECF_ErrorCode ECF_WriteSector(

 struct ECF_BlockDriver *pBlockDriver,

 uint32_t sector,

 uint8_t *pData,

 uint8_t flags

);

Parameters

 pBlockDriver

This is a pointer to the struct ECF_BlockDriver to write sectors in.

 sector

This specifies which sector to write.

 pData

This points to a uint8_t array with the data for the block driver to write.

 flags

These are flags for the write.

ECF_WRITESECTOR_BYPASS_WEARLEVELING:

If this flag is set, the block driver will bypass the wear leveling layer and write a physical

sector. There are very few reasons, if any, to do this.

ECF_WRITESECTOR_ALLOW_BUFFER_OVERWRITE:

Set this flag if you allow EcFAT to overwrite the buffer passed in pData. Useful if you will not

reuse that data you just wrote since it will speed up EcFAT slightly.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success).

Will return ECFERR_BUFFEROVERWRITTEN if

ECF_WRITESECTOR_ALLOW_BUFFER_OVERWRITE was set and the buffer was actually

overwritten.

Remarks

The difference between calling ECF_WriteSector and calling the block driver's m_fnWriteSector

directly is that ECF_WriteSector will properly handle wear leveling and locking of the block

driver.

ECF_WriteSector will automatically handle wear leveling and move blocks that are written

frequently.

The normal use case for ECF_WriteSector is for writing sectors to a RAW partition without file

system.

See also

m_fnWriteSector, ECF_Mount

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 43 of 65

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 44 of 65

6.4 ECF_TrimSectorRange

ECF_TrimSectorRange trims a range of sectors on the block device. By trimming sectors, you signal

that the sectors are not used and does not need to be stored.

ECF_ErrorCode ECF_TrimSectorRange(

 struct ECF_BlockDriver *pBlockDriver,

 uint32_t startSector,

 uint32_t endSector,

 uint8_t flags

);

Parameters

 pBlockDriver

This is a pointer to the struct ECF_BlockDriver to trim sectors information in.

 startSector

This specifies the first sector to trim.

 endSector

This specifies the last sector to trim.

 flags

No flags are defined, pass 0.

Return value

Returns one of the EcFAT error codes (ECFERR_SUCCESS on success)

Remarks

The difference between calling ECF_TrimSectorRange and calling the block driver's

m_fnTrimSectorRange directly is that ECF_TrimSectorRange will properly handle wear leveling

and locking of the block driver.

See also

m_fnTrimSectorRange, ECF_Mount

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 45 of 65

7 Data structures

7.1 struct ECF_BlockDriver

struct ECF_BlockDriver is used by ECF_Mount() and ECF_Format() to get access to the storage

device.

struct ECF_BlockDriver

{

 ECF_ErrorCode (*m_fnReadSector)(struct ECF_BlockDriver *,

 DWORD sector, BYTE *data);

 ECF_ErrorCode (*m_fnWriteSector)(struct ECF_BlockDriver *,

 DWORD sector, BYTE *data);

 ECF_ErrorCode (*m_fnGetVolumeInformation)(struct ECF_BlockDriver *,

 WORD* pwSectorSize, DWORD* pdwNumberOfSectors);

 ECF_ErrorCode (*m_fnTrimSectorRange)(struct ECF_BlockDriver *,

 DWORD dwStartSector, DWORD dwEndSector);

 void *m_BlockDriverData;

};

Members

m_fnReadSector:

This is a pointer to a function that EcFAT can call to read a sector from the storage device.

m_fnWriteSector:

This is a pointer to a function that EcFAT can call to write a sector to the storage device.

m_fnGetVolumeInformation:

This is a pointer to a function that EcFAT can call to get information about the sector size and

total size of the storage device.

m_fnTrimSector:

This is a pointer to a function that EcFAT can call to trim a sector. This is optional and can be

NULL.

m_BlockDriverData:

A void pointer that can be used by the block driver to store private data. EcFAT will pass a

pointer to the ECF_BlockDriver struct when it calls any of the functions above. The block driver

can use these to access its private data.

Remarks

These functions must be created by the user. An instance of the struct ECF_BlockDriver must

be cleared, filled with pointers to these functions and passed to ECF_Mount() and

ECF_Format().

If your block driver only supports one instance, you don’t need to use m_BlockDriverData, you

can just use global variables instead.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 46 of 65

7.1.1 m_fnReadSector

m_fnReadSector reads a single sector from the block device (usually an SD card or flash memory).

ECF_ErrorCode m_fnReadSector(

 struct ECF_BlockDriver *pBlockDriver,

 uint32_t sector,

 uint8_t *pData,

 uint8_t flags

);

Parameters

 pBlockDriver

This is a pointer to the struct ECF_BlockDriver that the function is a member of. It can be used

by the block driver to access the m_BlockDriverData member or to call the other functions.

 sector

This specifies which sector to read.

 pData

This points to a uint8_t array that the block driver needs to fill with the read data.

 flags

These are flags for the read.

ECF_READSECTOR_512_BYTES_ONLY:

If this flag is set, the block driver only needs to read 512 bytes, regardless of the sector size

and the buffer pointed to by pData is only 512 bytes big, regardless of the sector size.

Return value

Return ECFERR_SUCCESS if the read was successful.

If the read fails, return one of the EcFAT error codes defined in EcFAT.h. You can also define

your own error codes, error no 64 to 127 are reserved for custom block driver errors.

Remarks

EcFAT will call this function when it wants to read a sector from the storage device. The

m_fnReadSector function is part of struct ECF_BlockDriver. You need to supply it when writing

a block driver.

On both single- and multithreaded systems, EcFAT will make certain that it will not call any of

the other block driver functions until this call has been completed so you do not need to

implement any locking in the block driver unless it is needed for other purposes.

Note 1: If you use journaling and/or wear-leveling, you must respect the

ECF_READSECTOR_512_BYTES_ONLY flag. If you ignore it and the sector size is larger than

512 bytes, reading an entire sector will write beyond the end of the buffer pointed to by pData

and corrupt the system.

Note 2: If you support TRIM, m_fnReadSector will almost never be called for a sector that is

trimmed. But there are a few rare exceptions so you must return ECFERR_SUCCESS even if

you don't have any data to return. Just make sure to memset pData to 0's if that is the case.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 47 of 65

Example Code

// Create a global to hold our data. Make it 64 kb

uint8_t ramDriveData[64][1024];

ECF_ErrorCode RAM_GetVolumeInformation(

 struct ECF_BlockDriver *pBlockDriver,

 uint16_t* pSectorSize,

 uint32_t* pNumberOfSectors)

{

 *pSectorSize = 1024;

 *pNumberOfSectors = 64;

 return ECFERR_SUCCESS;

}

ECF_ErrorCode RAM_ReadSector(struct ECF_BlockDriver *pBlockDriver,

uint32_t sector, uint8_t *pData, uint8_t flags)

{

 if(sector >= 64)

 return ECFERR_PARAMETERERROR;

 if(flags & ECF_READSECTOR_512_BYTES_ONLY)

 memcpy(pData, ramDriveData[sector], 512);

 else

 memcpy(pData, ramDriveData[sector], 1024);

 return ECFERR_SUCCESS;

}

ECF_ErrorCode RAM_WriteSector(struct ECF_BlockDriver *pBlockDriver,

uint32_t sector, uint8_t *pData, uint8_t flags)

{

 if(sector >= 64)

 return ECFERR_PARAMETERERROR;

 if(flags & ECF_WRITESECTOR_512_BYTES_ONLY)

 memcpy(ramDriveData[sector], pData, 512);

 else

 memcpy(ramDriveData[sector], pData, 1024);

 return ECFERR_SUCCESS;

}

int main(void)

{

 ...

 struct ECF_BlockDriver blockDriver;

 memset(&blockDriver, 0, sizeof(struct ECF_BlockDriver));

 blockDriver.m_fnReadSector = RAM_ReadSector;

 blockDriver.m_fnWriteSector = RAM_WriteSector;

 blockDriver.m_fnGetVolumeInformation = RAM_GetVolumeInformation;

 // You can now call ECF_Mount() or ECF_Format() with blockDriver

 ...

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 48 of 65

}

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 49 of 65

7.1.2 m_fnWriteSector

m_fnWriteSector writes a single sector to the block device (usually an SD card or flash memory).

ECF_ErrorCode m_fnWriteSector(

 struct ECF_BlockDriver *pBlockDriver,

 uint32_t sector,

 uint8_t *pData,

 uint8_t flags

);

Parameters

 pBlockDriver

This is a pointer to the struct ECF_BlockDriver that the function is a member of. It can be used

by the block driver to access the m_BlockDriverData member or to call the other functions.

 sector

This specifies which sector to write.

 pData

This points to a uint8_t array with the data for the block driver to write.

 flags

These are flags for the write.

ECF_WRITESECTOR_512_BYTES_ONLY:

If this flag is set, the block driver only needs to write 512 bytes, regardless of the sector size.

The buffer pointed to by pData is only 512 bytes big so if set, you must not read more than

512 bytes.

ECF_WRITESECTOR_IS_TRIMMED:

If this flag is set, the block that is about to be written has previously been trimmed and is

probably already cleared.

Return value

Return ECFERR_SUCCESS if the read was successful.

If the write fails, return one of the EcFAT error codes defined in EcFAT.h. You can also define

your own error codes, error no 64 to 127 are reserved for custom block driver errors.

Remarks

The m_fnWriteSector function is part of struct ECF_BlockDriver. You need to supply it when

writing a block driver. EcFAT will call this function when it wants to write a sector to the storage

device.

On both single- and multithreaded systems, EcFAT will make certain that it will not call any of

the other block driver functions until this call has been completed so you do not need to

implement any locking in the block driver unless it is needed for other purposes.

Note: If you use journaling and/or wear-leveling, you must respect the

ECF_WRITESECTOR_512_BYTES_ONLY flag. If you ignore it and write the entire sector you

risk reading beyond the end of the buffer pointed to by pData which can result in a bus fault.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 50 of 65

Example Code

See example for m_fnReadSector

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 51 of 65

7.1.3 m_fnGetVolumeInformation

m_fnGetVolumeInformation returns information about the disk size and sector size of a block device.

ECF_ErrorCode m_fnGetVolumeInformation(

 struct ECF_BlockDriver *pBlockDriver,

 uint16_t *pSectorSize,

 uint32_t *pNumberOfSectors

);

Parameters

 pBlockDriver

This is a pointer to the struct ECF_BlockDriver that the function is a member of. It can be used

by the block driver to access the m_BlockDriverData member or to call the other functions.

 pSectorSize

This is a pointer to a uint16_t that should be set to the sector size.

 pNumberOfSectors

This is a pointer to a uint32_t that should be set to the number of sectors.

Return value

Return ECFERR_SUCCESS if the read was successful.

If the write fails, return one of the EcFAT error code defined in EcFAT.h. You can also define

your own error codes, error no 64 to 127 are reserved for custom block driver errors.

Remarks

The m_fnGetVolumeInformation function is part of struct ECF_BlockDriver. You need to supply

it when writing a block driver. EcFAT will call this function to determine the sector size and how

many sectors are there are on a block device.

On both single- and multithreaded systems, EcFAT will make certain that it will not call any of

the other block driver functions until this call has been completed so you do not need to

implement any locking in the block driver unless it is needed for other purposes.

Example Code

See example for m_fnReadSector

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 52 of 65

7.1.4 m_fnGetDriveProperty

m_fnGetDriveProperty returns properties about the block driver to EcFAT. m_fnGetVolumeInformation

serves the same purpose but m_fnGetDriveProperty can return more properties.

ECF_ErrorCode m_fnGetDriveProperty(

 struct ECF_BlockDriver *pBlockDriver,

 uint8_t informationType,

 uint32_t *pValue

);

Parameters

 pBlockDriver

This is a pointer to the struct ECF_BlockDriver that the function is a member of. It can be used

by the block driver to access the m_BlockDriverData member or to call the other functions.

 informationType

One of the values below depending on which type of property EcFAT wants to obtain.

ECF_DRIVEPROPERTY_SECTORSIZE:

Set *pValue to the sector size and return ECFERR_SUCCESS. Will only be called if

m_fnGetVolumeInformation is NULL.

ECF_DRIVEPROPERTY_NUMBEROFSECTORS:

Set *pValue to the number of sectors and return ECFERR_SUCCESS. Will only be called if

m_fnGetVolumeInformation is NULL.

ECF_DRIVEPROPERTY_SECTORSPERBLOCK:

If the block device have blocks where one block does not equal one sector, set *pValue to the

number of sectors per block and return ECFERR_SUCCESS.

 pValue

This is a pointer to a uint32_t that should be set to requested value.

Return value

Return ECFERR_SUCCESS if the read was successful.

If the write fails, return one of the EcFAT error code defined in EcFAT.h. You can also define

your own error codes, error no 64 to 127 are reserved for custom block driver errors.

Remarks

The m_fnGetDriveProperties function is part of struct ECF_BlockDriver. You need to supply it

when writing a block driver. EcFAT will call this function to determine the sector size and how

many sectors are there are on a block device.

On both single- and multithreaded systems, EcFAT will make certain that it will not call any of

the other block driver functions until this call has been completed so you do not need to

implement any locking in the block driver unless it is needed for other purposes.

Example Code

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 53 of 65

ECF_ErrorCode RAM_GetDriveProperty(

 struct ECF_BlockDriver *pBlockDriver,

 uint8_t propertyType,

 uint32_t* pValue)

{

 if(propertyType == ECF_DRIVEPROPERTY_SECTORSIZE)

 *pValue = 1024;

 else if(propertyType == ECF_DRIVEPROPERTY_NUMBEROFSECTORS)

 *pValue = 64;

 else

 return ECFERR_PARAMETERERROR;

 return ECFERR_SUCCESS;

}

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 54 of 65

7.1.5 m_fnTrimSectorRange (optional)

m_fnTrimSectorRange trims a range of sectors on the block device. By trimming sectors, EcFAT

signals that these sectors are not used and does not need to be stored.

ECF_ErrorCode m_fnTrimSectorRange(

 struct ECF_BlockDriver *pBlockDriver,

 uint32_t startSector,

 uint32_t endSector

);

Parameters

 pBlockDriver

This is a pointer to the struct ECF_BlockDriver that the function is a member of. It can be used

by the block driver to access the m_BlockDriverData member or to call the other functions.

 startSector

This specifies the first sector to trim.

 endSector

This specifies the last sector to trim.

Return value

Return ECFERR_SUCCESS if the read was successful.

If the trim fails, return one of the EcFAT error codes defined in EcFAT.h. You can also define

your own error codes, error no 64 to 127 are reserved for custom block driver errors.

Remarks

The m_fnTrimSectorRange function is part of struct ECF_BlockDriver. You may supply it when

writing a block driver. This function is not mandatory in a block driver and can be NULL.

EcFAT will call this function to trim sectors. The purpose of trimming is to tell the block device

that a sector is no longer in use. Some block drivers benefit from knowing which sectors are in

use by e.g. pre-erasing these sectors or by using the unused storage area for something else.

The sector range from and including startSector to and including endSector should be trimmed.

That is, m_fnTrimSectorRange(&bd, 5, 7) trims sectors 5, 6 and 7. m_fnTrimSectorRange(&bd,

9, 9) trims sector 9.

Since most block drivers will pre-erase a sector when m_fnTrimSectorRange is called, EcFAT

will try to call m_fnTrimSectorRange with as large ranges as possible so if the underlying

hardware supports erases larger than a sector, it is useful to check the range and see if a more

efficient operation can be performed.

On both single- and multithreaded systems, EcFAT will make certain that it will not call any of

the other BlockDriver functions until this call has been completed so you do not need to

implement any locking in the block driver unless it is needed for other purposes.

Example Code

// Assume a flash chip with 1024 pages where there is a page-erase,

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 55 of 65

// a block-erase (16 pages on this chip) and a chip-erase.

ECF_ErrorCode FlashDriver_TrimSectorRange(struct ECF_BlockDriver *bd,

uint32_t startSector, uint32_t endSector)

{

 uint32_t sector;

 if(startSector == 0 && endSector == 1023) {

 EraseFlashChip();

 } else if((startSector & 0xF) == 0 && (endSector & 0xF) == 0xF) {

 for(sector = startSector;sector <= endSector;sector += 16)

 EraseFlashBlock(sector>>4);

 } else {

 for(sector = startSector;sector <= endSector;sector++)

 EraseFlashSector(sector);

 }

 return ECFERR_SUCCESS;

}

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 56 of 65

7.1.6 m_fnFlush (optional)

m_fnFlush is called when EcFAT wants to flush data. It can be supplied by a block driver that caches

data to force it to flush its cache.

ECF_ErrorCode m_fnFlush(

 struct ECF_BlockDriver *pBlockDriver

);

Parameters

 pBlockDriver

This is a pointer to the struct ECF_BlockDriver that the function is a member of. It can be used

by the block driver to access the m_BlockDriverData member or to call the other functions.

Return value

Return ECFERR_SUCCESS.

Remarks

The m_fnFlush an optional function that is part of struct ECF_BlockDriver. If your block device

has a cache you need to implement this function. EcFAT will call it when it wants to be sure that

all changes are actually written to disc and not just sits in the cache.

On both single- and multithreaded systems, EcFAT will make certain that it will not call any of

the other block driver functions until this call has been completed so you do not need to

implement any locking in the block driver unless it is needed for other purposes.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 57 of 65

7.2 struct ECF_FileHandle

struct ECF_FileHandle is used by the EcFAT file handling functions to represent a handle to an open

file. It is also used by the ECF_ScanDir* functions to keep track of the current directory scan.

struct ECF_FileHandle

{

 ...

};

Members

The internal members of ECF_FileHandle must not be accessed directly by the user.

See also

ECF_OpenFile(), ECF_ScanDirBegin().

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 58 of 65

7.3 struct ECF_FileDirectoryData

struct ECF_FileDirectoryData is used by ECF_ScanDirNext() and ECF_GetFileInfo() to return

information about a specific file or directory entry.

struct ECF_FileDirectoryData

{

 char m_szFileName[256];

 char m_szShortFileName[13];

 uint8_t m_dirAttr;

 struct ECF_DateTime m_creationTime;

 struct ECF_DateTime m_lastAccessTime;

 struct ECF_DateTime m_lastWriteTime;

 uint32_t m_dirFileSize;

 ...

};

Members

m_szFileName:

This is the name of the file or directory. This field contains the long name and is only available if

ECF_OPT_SUPPORT_LONG_FILENAMES is defined.

m_szShortFileName:

This is the short name of the file.

m_dirAttr:

The entry's attributes. Valid flags are ECF_ATTR_READ_ONLY, ECF_ATTR_HIDDEN,

ECF_ATTR_SYSTEM, ECF_ATTR_DIRECTORY and ECF_ATTR_ARCHIVE.

m_creationTime:

Timestamp of when the file/directory was created. Has a resolution of 0,01 seconds.

m_lastAccessTime:

Timestamp of when the file/directory was last access. Has a resolution of 1 day. Note: ECF will

not update this value when doing file reads to avoid unnecessary writes.

m_lastWriteTime:

Timestamp of when the file/directory was last written. Has a resolution of 2 seconds.

m_dirFileSize:

The size of the file.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 59 of 65

7.4 struct ECF_DateTime

struct ECF_DateTime is used to represent time within EcFAT But note that the FAT file system does

not support the full resolution for all dates and times for all its fields. See comment for each field on

what resolution is supported.

struct ECF_DateTime

{

 uint16_t m_wYear;

 uint8_t m_bMonth;

 uint8_t m_bDay;

 uint8_t m_bHour;

 uint8_t m_bMinute;

 uint8_t m_bSecond;

 uint8_t m_bHundredth;

};

Members

m_wYear:

The year. E.g. 2012

m_bMonth:

The month. 1 = January, 12 = December.

m_bDay:

The day of the month. 1 – 28, 29, 30 or 31 depending on which month it is.

m_bHour:

The hour of the day. 0 – 23.

m_bMinute:

Minute. 0 - 59

m_bSecond:

Second. 0 - 59.

m_bHundredth:

Hundredths (1/100 parts) of a second. 0 - 99.

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 60 of 65

7.4.1 Converting to time_t

You can use the code below to convert from an ECF_DateTime into a time_t (with epoch of 1970-01-

01 00:00:00)

// Will convert a struct ECF_DateTime to time_t (seconds since epoch

// 1970-01-01 00:00:00)

// Valid for times between 1970 and 2037 for a signed 32-bit time_t

// Valid for times between 1970 and 2099 for an unsigned 32-bit time_t

// Hundredths will be lost in the conversion

ECF_ErrorCode ECF_DateTimeToTimeT(struct ECF_DateTime *dateTime,

time_t *t)

{

 const uint8_t bDaysInMonth[13] =

 {31,28,31,30,31,30,31,31,30,31,30,255};

 uint16_t days;

 uint8_t month;

 uint8_t year;

 uint8_t isLeapYear;

 if(dateTime->m_wYear < 1970 ||

 dateTime->m_wYear >= 2100 ||

 dateTime->m_bMonth > 12 ||

 dateTime->m_bMonth < 1 ||

 dateTime->m_bDay < 1 ||

 dateTime->m_bHour > 23 ||

 dateTime->m_bMinute > 59 ||

 dateTime->m_bSecond > 59)

 goto exit_function_and_fail;

 year = dateTime->m_wYear-1970;

 isLeapYear = (((year+2) & 3) == 0);

 days = (year*365 + (year+1)/4);

 for(month = 0;month < (dateTime->m_bMonth-1);month++)

 {

 days += bDaysInMonth[month];

 if(month == 1 && isLeapYear) // February on a leap year

 days++;

 }

 days += dateTime->m_bDay-1;

 if((dateTime->m_bDay-1) >= bDaysInMonth[dateTime->m_bMonth-1])

 {

 if(dateTime->m_bMonth != 2 &&

 dateTime->m_bDay == 29 &&

 !isLeapYear)

 goto exit_function_and_fail;

 }

 *t = (time_t)((time_t)days*86400 + dateTime->m_bHour*3600 +

 dateTime->m_bMinute*60 + dateTime->m_bSecond);

 return ECFERR_SUCCESS;

exit_function_and_fail:

 *t = 0;

 return ECFERR_PARAMETERERROR;

}

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 61 of 65

7.4.2 Converting from time_t

You can use the code below to convert from an a time_t (with epoch of 1970-01-01 00:00:00) into an

ECF_DateTime

// Will convert a struct ECF_DateTime to time_t (seconds since epoch

1970-01-01 00:00:00)

// Valid for times between 1970 and 2037 for a signed 32-bit time_t

// Valid for times between 1970 and 2099 for an unsigned 32-bit time_t

ECF_ErrorCode ECF_TimeTToDateTime(time_t t, struct ECF_DateTime

*dateTime)

{

 const uint8_t bDaysInMonth[13] =

 {31,28,31,30,31,30,31,31,30,31,30,255};

 uint16_t days = (uint16_t)(t / 86400);

 uint32_t secondsInDay = (uint32_t)t % 86400;

 uint8_t month = 0;

 uint8_T daysInFebruary = 28;

 uint8_t year;

 year = (days - ((days / 365)+1)/4) / 365;

 days -= year*365 + (year+1)/4;

 if(((year+2) & 3) == 0)

 daysInFebruary++;

 if(days >= 31) // January

 {

 month++;

 days -= 31;

 if(days >= daysInFebruary) { // February

 month++;

 days -= daysInFebruary;

 while(days >= bDaysInMonth[month])

 days -= bDaysInMonth[month++];

 }

 }

 dateTime->m_wYear = year+1970;

 dateTime->m_bMonth = month+1;

 dateTime->m_bDay = (uint8_t)days+1;

 dateTime->m_bHour = (uint8_t)(secondsInDay/3600);

 dateTime->m_bMinute = (uint8_t)((secondsInDay/60) % 60);

 dateTime->m_bSecond = (uint8_t)(secondsInDay % 60);

 dateTime->m_bHundredth = 0;

 return ECFERR_SUCCESS;

}

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 62 of 65

8 Options (defines)
EcFAT will include a file called Project.h. You should make all your EcFAT defines in Project.h.

8.1 ECF_OPT_SUPPORT_ALL_SECTORSIZES

Define to support all possible sector sizes. If defined, 512, 1024, 2048 and 4096 will supported as

sector sizes. If not, the only supported sector size will be 512.

Most devices uses a 512 bytes sector size but if you need to support unknown devices you need to

define ECF_OPT_SUPPORT_ALL_SECTORSIZES. But by defining it, ECF and the cache will use

more memory.

8.2 ECF_OPT_SUPPORTED_MOUNTPOINTS

Defines how many drives can be mounted. If not defined, a default of 1 will be used. Values between 1

and 26 are supported.

8.3 ECF_OPT_SUPPORT_FORMAT

Define if you need ECF_Format(), ECF_CreatePartitionTable() and/or ECF_CreatePartition().

8.4 ECF_OPT_SUPPORT_LONG_FILENAMES

Define if you want to support long file names.

8.5 ECF_OPT_SECTOR_CACHE

Define how many sectors will be held in the cache. Recommended value is 4 or above but you can set

it to 1 if you need to save memory and don't mind a slower speed.

8.6 ECF_OPT_ATTEMPT_ORDERED_WRITE

Define to make ECF flush its cache in order rather than by usage. Useful for devices that internally

have bigger page sizes than a sector and benefits from having the sectors written in order.

8.7 ECF_OPT_USE_MUTEX

Define to use a mutex to lock the file system. You will also need to define:

ECF_OPT_MUTEX_TYPE

ECF_OPT_MUTEX_INIT(m)

ECF_OPT_MUTEX_ACQUIRE(m)

ECF_OPT_MUTEX_RELEASE(m)

ECF_OPT_MUTEX_CLEANUP(m)

Example for FreeRTOS:

In Project.h:

#define ECF_OPT_USE_MUTEX

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 63 of 65

#define ECF_OPT_MUTEX_TYPE void *

#define ECF_OPT_MUTEX_INIT(m) Mutex_Init(&m)

#define ECF_OPT_MUTEX_ACQUIRE(m) Mutex_Acquire(m)

#define ECF_OPT_MUTEX_RELEASE(m) Mutex_Release(m)

#define ECF_OPT_MUTEX_CLEANUP(m) Mutex_CleanUp(m)

uint8_t Mutex_Init(void **m);

void Mutex_Acquire(void *m);

void Mutex_Release(void *m);

void Mutex_CleanUp(void *m);

Somewhere in a .c file:

uint8_t Mutex_Init(void **m)

{

 vSemaphoreCreateBinary(*m);

 return TRUE;

}

void Mutex_Acquire(void *m)

{

 xSemaphoreTake(m, portMAX_DELAY);

}

void Mutex_Release(void *m)

{

 xSemaphoreGive(m);

}

void Mutex_CleanUp(void *m)

{

 vSemaphoreDelete(m);

}

8.8 ECF_OPT_PROGRESS_CALLBACK

Set to define a progress callback for lengthy operations. Currently only used by ECF_Format()

8.9 ECF_OPT_WATCHDOG_CALLBACK

Will be called when EcFAT performs a lengthy operation about once for every block driver operation.

Please note the following:

 Although EcFAT will reset the watchdog during lengthy operations, you will still need to

occasionally reset it in your other code that does not call EcFAT.

 If you are using a very large cache, EcFAT might not need to call the block driver and the

watchdog will not be reset. But since all operations are in the cache, they should be fast and

EcFAT should return quickly.

 Although most blockdriver operations are relatively quick in comparison to the watchdog timer,

m_fnTrimSectorRange () might be called with a wide range and may take a lot of time to

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 64 of 65

complete. So you might need to add a watchdog reset in your m_fnTrimSectorRange()

function.

8.10 ECF_OPT_CURRENT_TIME_FUNCTION

Define to make EcFAT aware of time and write appropriate time stamps.

#define ECF_OPT_CURRENT_TIME_FUNCTION(ecfdatetime) \

 Runtime_RetrieveDateTime(ecfdatetime)

void Runtime_RetrieveDateTime(struct ECF_DateTime *dateTime);

Somewhere in a .c file:

void Runtime_RetrieveDateTime(struct ECF_DateTime *dateTime)

{

 int year, month, day, hour, minute, second, milliseconds;

 // TODO: Retreive year, month, day, hour, minute, second

 // and milliseconds

 dateTime.m_wYear = year; // I.e 2014

 dateTime.m_bMonth = month; // 1 = January, 12 = December

 dateTime.m_bDay = day; // Day of the month 1-28,29,30,31

 dateTime.m_bHour = hour; // Hour of the day 0 – 23

 dateTime.m_bMinute = minute; // Minute 0-59

 dateTime.m_bSeconds = seconds; // Seconds 0-59

 dateTime.m_bHundredth = milliseconds/10;

}

Note: The function you define is supposed to return quickly so if you have real time clock (RTC) that is

slow to access, you should periodically check your RTC, store the values in RAM and return these

values then the function is called.

8.11 ECF_OPT_CUSTOM_CRC_ROUTINE

Define to set a CRC routine used with wearleveling and bad block management. EcFAT already has a

built-in implementation but is optimized to save space so you might want to replace it with a table or

hardware based solution.

#define ECF_OPT_CUSTOM_CRC_ROUTINE(data,datasize) \

 MyCRCFunction(data,datasize)

The CRC should calculate CRC-CCITT with an intial value of 0xFFFF. For reference, the CRC of

“123456789” is 0x29B1

The custom routine should have the following declaration:

Document name:

EcFAT API Reference
Version

3.1.2

Internal reference:

Products/EcFAT/API Reference/4537

EcFAT API Reference Page 65 of 65

uint16_t MyCRCFunction(uint8_t* pData, uint16_t size);

8.12 ECF_OPT_SUPPORT_WEARLEVEL

Set to enable wear-leveling support in EcFAT.

8.13 ECF_OPT_WEARLEVEL_META_CACHE

Define how many metadata blocks will be held in the wearlevel cache. Each metadata block will use

around 520 bytes of memory regardless of the sector size.

128-258 physical sectors: Cache of 1 meta block. There is no need for more.

259-514 physical sectors: Cache of 2 meta blocks. There is no need for more.

515-770 physical sectors: Cache of 3 meta blocks. There is no need for more.

771-1026 physical sectors: Cache of 4 meta blocks. There is no need for more.

1027-1282 physical sectors: Cache of 4 meta blocks. There is no need for more but up to 5 is useful.

1283-1538 physical sectors: Cache of 4 meta blocks. There is no need for more but up to 6 is useful.

1539-1794 physical sectors: Cache of 4 meta blocks. There is no need for more but up to 7 is useful.

1795 physical sectors or more: Cache of 4 meta blocks. There is no need for more but up to 8 is

useful.

You can set it to lower than the recommendation but if you set it too low, the meta data blocks will be

written to disk too often and the positive effects of the wear levelling will be lost.

8.14 ECF_OPT_SUPPORT_BAD_BLOCK_MANAGEMENT

Set to enable bad block management support in EcFAT. You must also enable wear-leveling and

define ECF_OPT_SUPPORT_WEARLEVEL

8.15 ECF_OPT_WEARLEVEL_MAX_BAD_BLOCK_COUNT

The maximum number number of blocks that can be bad. Note that this is the number of bad blocks

that the compiled EcFAT code will support. You will not be able to mount or format a disk with a

supported bad block count that is higher than this value.

8.16 ECF_OPT_JOURNAL_DIRECT_COMMIT

EcFAT will normally delay committing a journal as long as it can. This gives a great performance boost

because a lot of time several commits can be merged into one and EcFAT will need to write a lot less

on the disk.

But this also becomes very confusing when debugging because the errors may sometimes become

delayed. An error code returned by one operation might actually have its root cause in a call that was

made previsouly.

It can be useful to define ECF_OPT_JOURNAL_DIRECT_COMMIT to have EcFAT immediately

commit a journal right after the operation if you are debugging and want the error to appear closer to

the root cause of the problem. But don’t leave it one since it will hurt performance.

